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Resumen
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Las evaluaciones de la vulnerabilidad al cambio climático tienen una larga historia en la 
investigación multidisciplinaria. El enfoque en la construcción de evaluaciones ha pasado de 
basarse sólo en rasgos biofísicos y climáticos hacia un enfoque más integrado, incluyendo los 
aspectos sociales y económicos de las comunidades humanas. Esta ampliación del alcance 
ha convertido las evaluaciones en herramientas útiles para la formulación de políticas y el 
gasto público en mitigación y adaptación al cambio climático. Sin embargo, no existe consenso 
sobre el modelo apropiado que se debe seguir dada la incertidumbre sobre los mecanismos 
de ponderación y agregación. El propósito de este artículo es evaluar la vulnerabilidad al 
cambio climático a nivel local en la Cuenca del Río de la Plata en Uruguay. Para ello elegimos 
un conjunto de indicadores y una metodología que puede aplicarse a cualquier proyecto de 
desarrollo y es apta para la replicación a diferentes escalas, dinámicas y diversidad regional. 
Nuestra evaluación de vulnerabilidad difiere de otros estudios en el sentido de que la agregación 
no se basa en pesos subjetivos o basados en expertos sino en el comportamiento de los datos. 
Los resultados muestran la distribución norte-sur de las localidades más vulnerables en las 
áreas centrales de la Cuenca. Los perfiles de vulnerabilidad están formados principalmente por 
la capacidad de adaptación (en forma de acceso a sistemas de tratamiento de aguas residuales) 
y los peligros relacionados con la precipitación y la temperatura.

Palabras claves: Exposición, sensibilidad, capacidad de adaptación, adaptación, mitigación.
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Abstract

Vulnerability assessments to climate change have a long history on multidisciplinary research. 
The focus on constructing assessments has shifted from relying only on biophysical and 
climatic features toward a more integrated approach including social and economic aspects 
of human communities. This expansion on scope has converted assessments on useful tools to 
inform policy making and public expenditure on mitigation and adaptation to climate change. 
However, there is no consensus on the appropriate modelling to be followed given uncertainty 
on weighting and aggregation mechanisms.  The purpose of this paper is to assess vulnerability 
to climate change at local level for the Rio de la Plata Basin in Uruguay.  For this we choose 
a set of indicators and a methodology that can be applied to any development project and is 
suitable of replication to different scales, dynamics and regional diversity. Our vulnerability 
assessment differs from other studies in the sense that aggregation does not rely on subjective 
or experts-based weights but on the behavior of data. Results show north-south distribution of 
the most vulnerable localities in the central areas of the Basin. The vulnerability profiles are 
shaped mainly by adaptive capacity (in the form of access to sewage treatment systems) and 
hazards related to precipitation and temperature.

Keywords: Exposure, sensitivity, adaptive capacity, adaptation, mitigation.
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1.   Introduction

Vulnerability has a particular long history in the risk hazards and geography 
literature, where it has been defined from a biophysical point of view as the potential 
for loss because of a natural disaster (Mitchell et al., 1989) and is often understood 
to have two sides, namely, an external side related to the shocks and perturbations to 
which a system is exposed; and an internal side regarding the ability (or lack thereof) 
to adequately respond to and recover from external stresses (Chambers, 1989). 

The applications that are given to assessments and indicators range from informing 
decision-making processes in complex environments, to the allocation of funds to 
adaptation and mitigation strategies in at-risk regions. Among these regions there may be 
communities that suffer of food, health and environmental insecurity, gender inequalities, 
weak security and governance, lack of infrastructure and education, and lack of access to 
appropriate resources and capacities to deal with extreme events (Bele, Tiani, Somorin, 
& Sonwa, 2013). From mid-1990’s research on vulnerability changed from an exclusive 
focus on meteorological and biophysical factors towards a multidisciplinary approach 
overlapping social, economic and political issues related to climate change (Fernandez et 
al. 2015). Hence, research on vulnerability during the last 20 years has focused not only 
in meteorological and biophysical factors, whose frequency and historical distributions 
determine the level of exposure and sensitivity of a region and are considered stress factors 
of a system but also research has extended to the socio-economic and political structures 
as well as institutions (or lack thereof) that make societies vulnerable (Blaikie et al., 1994; 
Bohle et al., 1994; Cutter, 1996; Ribot, 1996; Kelly and Adger, 2000).

The Intergovernmental Panel on Climate Change (IPCC) in the Second Assessment 
Report defines vulnerability as “the extent to which climate change may damage 
or harm a system” and it added that vulnerability “depends not only on a system’s 
sensitivity, but also on its ability to adapt to new climatic conditions” (Watson et al. 
1996).  In addition, Watson et al. (1998) argue that the vulnerability of a region depends 
to a great extent on its wealth and development conditions because poverty levels limit 
adaptive capabilities, economic flexibility to cope with climatic hazards and deter 
adoption of technologies to protect production systems. Therefore, socioeconomic 
systems are more vulnerable in developing countries where economic and institutional 
circumstances are less favorable. That is, the position of the IPCC is aligned with that 
of Blaikie et al. (1994) in the sense that vulnerability highly depends on the level of 
economic and institutional development of a region (Fernandez et al. 2015).

Hence, vulnerability assessments provide a starting point to determine the effective 
means of promoting remedial action to limit impacts by supporting coping strategies 
and facilitating adaptation. The purpose of this paper is to assess vulnerability to 
climate change at local level for the Rio de la Plata Basin in Uruguay.  For this we 
choose a set of indicators and a methodology that can be applied to any development 
project and is suitable of replication to different scales, dynamics and regional 
diversity. Our vulnerability assessment differs from other studies in the sense that 
aggregation does not rely on subjective or experts-based weights but on the behavior 
of data. In addition, we take an integrated approach by not relying only on biophysical 
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indicators but also on components related to the socioeconomic context. Results show 
north-south distribution of the most vulnerable localities in the central areas of the 
Basin.

The vulnerability profiles are shaped mainly by adaptive capacity (in the form 
of access to sewage treatment systems) and hazards related to precipitation and 
temperature. 

This paper is organized as follows: Section 2 discusses the details of the methodology 
behind the assessment. Section 3 presents the results. Section 4 concludes.

2.   Methodology

2.1.   Vulnerability

Kelly and Adger (2000) defined vulnerability as “the ability or inability of 
individuals or social groupings to respond, recover from or adapt to any external stress 
placed on their livelihoods and well-being.” Thus, vulnerability to climate change is a 
multidimensional process affected by a large number of indicators which are rooted in 
four disciplines, namely, biophysics, meteorology, economics and ecology. A typical 
approach to quantifying vulnerability under this approach is to define a set of proxy 
indicators (Luers et al., 2003) and assess vulnerability through their aggregation. 
Indicators are useful for monitoring and studying trends and exploring conceptual 
frameworks and are also applicable across different scales including district, regional 
and national levels (Gbetibouo et al., 2010). They are useful tools on projecting 
vulnerability based on an adequate understanding of current conditions, trends, and 
causalities (Moser, 2010). 

In this paper we characterize vulnerability in terms of its three components, 
namely (Watson et al. 1996):

1.      Exposure: the condition of disadvantage due to the location, position or  
      location of a subject, object or system at risk.

2.      Sensitivity: the degree of internal fragility of a subject, object or system     
        to meet a threat and receive a possible impact due to the occurrence of       
        an adverse event.

3.      Adaptive capacity: the capacity of a system, community or society    
      exposed to hazards to cope, absorb, and recover from the effects of
        an adverse event timely and effectively, considering the preservation
        and restoration of its essential basic structures and functions.

There is no systematic methodology to determine vulnerability in the context 
of multiple stressors (O’Brien et al., 2004). The basic setup for climate change 
vulnerability assessments is the assumption that climate change exposure (i.e., 
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on-going and future exposure) will affect current sensitivity, either positively or 
negatively, and that individuals or communities will respond given their adaptive 
capacity. Thus, the vulnerability profile is constructed by combining indicators for 
adaptive capacity, sensitivity indicators as well as indicators related to exposure to 
climate variables (O’Brien et al., 2004). The assessment is applied to all locations that 
are geographically exposed to the Rio de la Plata Basin and examines the importance 
of drainage infrastructure as a component for reducing vulnerability to climate 
change.  We use 243 localities in the departments of Canelones, Colonia, Flores, 
Florida, Lavalleja, Maldonado, San Jose and Montevideo (Figure 1).

Figure 1: Study Area – Rio de la Plata Basin
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Source:  Construction and Aggregation of the Vulnerability Indicators

We use a number of indicators not only based on biophysical terms but also 
on the socioeconomic context of the basin. In order to construct the vulnerability 
indicator we aggregate the exposure and sensitivity indicators following Fernandez 
et al. (2015), Hiremath (2013) and Iyengar et al (1982).  Let Xid denote the value of 
the ith vulnerability indicator in the dth locality (i.e.  i = 1,2, … ,m; d = 1,2, …n). For 

normalization we set  yid  =                                  if it is assumed that the indicator is 
Maxd Xid - Mind Xid

Xid - Mind Xid
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positively associated to vulnerability, and yid  =                                    otherwise.

The scaled values, yid, vary from zero to one, such that from the matrix of scaled 
values, Y = (yid), we construct a measure of vulnerability for each locality as follows:

                                     yd = w1 y1d + w2 y2d + ··· + wm ymd                                (3)

Where wi are weights reflecting the relative importance of the individual indicators 
with the following properties 0 < wi < 1 and w1 + w2 + ··· + wm = 1. We assume the 
weights vary inversely as the variation in the respective indicators of vulnerability as 
follows: 

Maxd Xid - Mind Xid

Maxd Xid - Xid

wi = k
√Var ( yi )

√ Var ( yi )
Where k  =( m

i=1
1 )Σ

-1
.

This weighting mechanism ensures that large variation in any of the indicators will 
not dominate the contribution of the rest and distort comparisons. 

A meaningful characterization of the vulnerability profiles should be in terms of a 
fractile classification based on an assumed distribution of yd (Iyengar 1982).  We assu-
me that yd follows a Beta distribution in the range (0, 1) which is skewed and relevant 
to characterize positive valued random variables. This distribution has the probability 
density as follows:

f (z) = za-1(1-z)b-1dx
B(a,b) , 0 < z > 1 and a,b > 0

Where B (a,b) = ∫1  xa-1 (1 - x)b-1 dx  
0

The parameters (a,b) can be estimated by solving the following simultaneous 
equations:

          (1 - y)a - yb = 0                                                        (6)
       ( y - m) a - mb = m - y                                                (7)            

Where, y is the overall mean of the localities indicators and m is defined as:

m = s2 + y2                                                                                                    (8)    
y

(4)

(5)
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yWhere s 2  is the variance of the indicators by locality.

Let (0, z1), (z1 , z2 ), (z2 , z3 ), (z3 , z4 ), (z4 , z5 ) be the linear intervals such 
that each one has the same probability weight of 20 per cent. The cut-off points (z) 
can be obtained from tables of the Beta function. These fractal groups can be used to 
classify the vulnerability categories as follows:

                    1.     Less vulnerable if 0 < yi < z1
                    2.     Moderately vulnerable if z1 < yi < z2
                    3.     Vulnerable if  z2 < yi < z3
                    4.     Highly vulnerable if  z3 < yi <z4
                    5.     Very high vulnerability if  z4 < yi < 1

2.2    Climate Indicators

Similar to Fernandez et al (2015) we choose temperature, humidity, wind intensity 
and precipitation as climate (exposure) indicators. These are part of the Essential 
Climate Variables (ECV) identified by the Global Climate Observing System (GCOS) 
as relevant to understand the climate system (Mason et al. 2010). We focus on climate 
variability using a dataset which contains the ECVs in a monthly basis for a range of 
40 years (1971-2011). 

This range is sensible because that particular trends in warming, ocean precipitation 
anomalies, average of maximum zonal-mean wind stress and other effects are well-
defined since 1970 (IPCC 2014). 

The climate variables in this study are common to the computational models used 
by the IPCC to simulate the climate change scenarios. These variables are available 
in different reanalysis datasets such as NCEP/NCAR Reanalysis Project (CDAS) and 
Modern Era Retrospective-Analysis for Research and Applications (MERRA) from 
NASA. For the latter type of data it is necessary that all units of analysis are located as 
close as possible to a weather station; however this is not usually possible. Also, these 
parameters vary significantly even within a region due to physical factors (e.g. terrain 
slope), limiting the use of interpolation because of likely biases. For that purpose 
we propose to use reanalysis climate datasets within a specific range of time and 
area. Thus, we extract climate data through a regular grid over the areas of interest 
(i.e. spatial map) for each time step available. Then we classify some locations with 
similar or different climate patterns, and identify areas with well-regulated seasonal 
patterns. It is inferable that the latter puts a particular location in a more vulnerable 
position to climate change.

In practice, climate data are usually found in time series of spatial maps (2-3 
dimensions) which imply very large datasets. Then we need to summarize the 
variability in a manageable set of indicators. Therefore, we make use of a principal 
component analysis (PCA) which is known in the oceanography literature as empirical 
orthogonal function (EOF) (Emery and Thomson 2001). This technique permits to 
characterize dominant spatial patterns and temporal indexes of variability with few 
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first modes. However, these modes may not be necessarily linked to dynamical or 
physical modes, but they represent the covariance structure of the dataset. In our 
approach, we assume that these modes are linked to climate patterns in the areas of 
study. Hence, our exposure index is linked to the correlation coefficient between the 
time series and the specific location with the principal component of the entire dataset 
(Mearns et al., 1997). The EOFs have a physical interpretation, which could lead 
to identify possible spatial patterns in order to make sensible comparisons between 
regions (Lorenz, 1956). 

Following Bjornsson et al. (1997), a climate dataset is formed by a matrix X(t,j,i) 
of 3 dimensions (time, longitude, latitude), the first dimension corresponds to time, 
and the other two correspond to space. The dataset is re-arranged in a matrix A(x,t) 
with dimension NxM, where M is the number of elements in spatial dimension, and 
N is the temporal dimension. The matrix A(x,t), could be represented by a linear 
combination of their eigenfunction, F(x), and eigenvector, a(t):

A(x,t) = ∑N   an(t)Fn(x)                                             (1)n=1

The matrix A(x,t)  is demeaned to get an anomaly matrix; then it is decomposed 
by the singular decomposition method in order to get non-singular values which 
correspond to the EOF and PC of the data (i.e. the spatial and temporal patterns in the 
area of interest). The EOF gives a map of the variance of the modes in the dataset. 

We relate the value for a particular location with the corresponding PC linked to 
a temporal pattern in the parameter. The exposure indicator will be formed by the 
extracted EOF (cEOF) and the variance of the time series (vTS) of the parameter in a 
particular location (x,y) in the map such that:

                                              EI=cEOF*vTS                                                  (2)

In order to avoid different results because of the order of variables or modification 
in locations number, all the process is carried over the original dataset, that is, the 
X(t,j,i) is rearranged in A(x,t).

2.3.   Sensitivity and Adaptive Capacity Indicators 

As in previous studies (Antwi-Agyei et. al. 2012, Luers et. al. 2003, Lardy et. 
al. 2012, Ionescu et. al. 2009) we separate vulnerability into its three components, 
namely, exposure, sensitivity and adaptive capacity. The set of indicators we use 
are given in Table 1. The exposure indicators also come from the Climate Forecast 
System Reanalysis (CFSR) monthly products, developed by the National Center for 
Environmental Prediction (NCEP), for the date range from 1979 to 2010 and extracted 
in a rectangular grid (36S-29S, 60W-52W). The rest of indicators belong come from 
the 2011 Population and Household Census (PHC). 
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Table 1: Vulnerability Indicators

             Focus                  Indicators         Source
Exposure
Precipitation (+)
Relative humidity (+)
Wind velocity (+)
Temperature (+)
Sensitivity
Illiteracy rate (+)
Population density (+)
Unemployment rate (+)
Average number of children per household (+)
Proportion of crowded households (+)
Proportion of population 0-5 years (+)
Proportion of population 65 years or older (+)
Proportion of population with low schooling (+)
Proportion of population with permanent disability (+)
Adaptive Capacity
Proportion of households receiving water through piped system (-)
Proportion of households with access to computer (-)
Proportion of households with electricity service (-)
Proportion of households with land phone service (-)
Proportion of households with proper sanitary facilities (-)
Proportion of households with sewage treatment service (-)
Proportion of houses with exclusive room for kitchen (-)
Proportion of houses with exclusive sanitary facilities (-)
Proportion of population with internet access (-)
Proportion of population with mobile phone access (-)

NCAR
NCAR
NCAR
NCAR

PHC
PHC
PHC
PHC
PHC
PHC
PHC
PHC
PHC

PHC
PHC
PHC
PHC
PHC
PHC
PHC
PHC
PHC
PHC

Climate

Demographics

Socially
vulnerable groups

Physical
infrastructure

Notes: PHC - Population and Household Census and NCAR – National Center for Atmospheric Research 
(USA). +/- denote the association between the indicator and vulnerability

2.4.   Results  

The EOFs and their principal components may be interpreted as a climate pattern 
and serve to extract a map correlation value for a particular location. Figure 2 shows 
the EOF analysis for all the exposure indicators. In every case the temporal and 
spatial correlations are around 0.8 which reflects this approach is reliable to proxy 
climatic behavior within the context of the assessment. However, given the location 
of all localities with respect to the basin and the homogeneous geographic conditions, 
exposure to climatic features does not show sharp differences across localities. In 
addition, the EOFs and PCs also contain a significant share of the climatic variance 
(Table 2).
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Figure 2: EOF analysis: (a) Precipitation, (b) Temperature, (c) Relative humidity, 
(d) Wind velocity

(a)

(b)

Note: In the EOF panel, dots represent the localities where correlation with PC is extracted.
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Table 2: Percentage of Explained Variability - EOF Mode

             Indicator                  Percentage of variability
Precipitation (+)
Relative humidity (+)
Wind velocity (+)
Temperature (+)

70.69%
95.79%
78.96%
99.30%

Figure 2 (continued): EOF analysis: (a) Precipitation, (b) Temperature, (c) Relative 
humidity, (d) Wind velocity

(c)

(d)

Note: In the EOF panel, dots represent the localities where correlation with PC is extracted.
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3.   Vulnerability Assessment

The estimated parameters a and b of the Beta distribution are 26 and 33, respectively, 
and the cut-off points are z1 = 0.387, z2=0.424, z3=0.457 and z4=0.495. Table 3 shows 
the weights of each indicator towards the formation of the aggregate vulnerability 
indicator.  There is strong contribution mainly from exposure and adaptive capacity 
indicators. 

The largest weights correspond to the proportion of households with sewage 
treatment service, and precipitation. In the area there used to be, by the time of 
data collection, important works on drainage infrastructure to control floods. Thus, 
precipitation and runoff are key variables related to those works that may shape the 
vulnerability profile of the localities. Other climate-related variables are among the top 
ten indicators, as follows, temperature (3rd), relative humidity (6th) and wind velocity 
(7th). From the five indicators with the highest weights, one of them is the proportion 
of population with low schooling (4th) and another is related to physical infrastructure, 
namely, the proportion of houses with exclusive room for kitchen (5th).  On the other 
hand, the indicators with the lowest weights correspond to the proportion of houses 
with exclusive sanitary facilities, the proportion of households receiving water 
through piped system, and the proportion of population with permanent disability. 
Intermediate values appear for some of the sensitivity indicators such as the illiteracy 
rate (9th), the proportion of population 65 years or older (10th), and the proportion of 
population 5 years or younger (12th).

Table 3: Weights of the Vulnerability Indicators

Indicator                                                                                              Weight
Proportion of households with sewage treatment service
Precipitation
Temperature
Proportion of population low schooling
Proportion of houses with exclusive room for kitchen
Relative humidity
Wind velocity
Proportion of households with land phone service
Illiteracy rate
Proportion of population 65 years or older 
Proportion of population with internet access
Proportion of population 1-5 years
Proportion of households with electricity service
Proportion of households with proper sanitary facilities
Proportion of population with mobile access
Proportion of houses with exclusive sanitary facilities 
Proportion of households receiving water through piped system
Proportion of population with physical disability 

0.0955
0.0848
0.0720
0.0678
0.0656
0.0633
0.0628
0.0606
0.0597
0.0588
0.0547
0.0456
0.0450
0.0396
0.0344
0.0342
0.0296
0.0260
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Figure 3 maps the vulnerability categories to the Basin.  The least vulnerable 
localities are spread across the departments of Colonia, Canelones, Florida, Lavalleja 
and Maldonado.  There is no uniform pattern apart from the economic conditions of 
those areas. On the contrary, most of the high and very high vulnerability localities 
concentrate in San Jose. Vulnerability in these areas is shaped mainly by economic 
disadvantage, in terms of low schooling and housing conditions, in interaction with 
precipitation and temperature, and related hazards, e.g. floods, droughts.  Intermediate 
levels of vulnerability are found around Montevideo, Uruguay’s capital and 
largest city. Though Montevideo is located in areas with greater climatic hazards, 
infrastructure and agglomeration externalities appear to mitigate any of the exposure 
indicators. Hence, results agree with Blaikie et. al. (1994) in the sense that the multi-
dimensional perspective about vulnerability is grounded on the idea that a climatic 
disaster occurs when unsafe conditions in the socioeconomic system converge with 
the biophysical factors that favor the exposure of a natural hazard. Therefore, unlike 
the biophysical vision where vulnerability depends exclusively on the frequency 
and geographical distribution of disasters, the scope of our vulnerability assessment 
involves the number of people that experience a hazard and suffer serious damage 
and/or disruption of their subsistence system.

Figure 3: Mapping of Vulnerability to Climate Change



26

3.1.   Decomposition of the Composite Vulnerability Indicator

We separate the individual indicators and apply the aggregation procedure in order 
to obtain three separate indicators for exposure, sensitivity and adaptation.

Panel (a) of Figure 4 shows that the localities with the least adaptive capacity are 
located in the western area of the Canelones department and around Montevideo. Thus, 
Montevideo turns out to be moderately adaptable to climate change. Other localities 
with high adaptive capacity appear in El Pinar and Villa Argentina (Canelones 
department), and Santa Regina (Colonia department). Panel b shows that the highly 
sensitive localities are found in the departments of San Jose, the western portion of 
Canelones and the eastern part of Lavalleja. Moderately vulnerable localities are 
sprawled across the Basin where clear concentration arises. This is more noticeable 
for the least sensitive localities which are located to the west of Montevideo and 
concentrated in the south and coastal part of the Basin. Panel c shows that the highest 
exposed localities are also found in a North-to-South pattern. Furthermore, the highly 
and very highly exposed localities are concentrated in the San Jose Department. 
It includes Montevideo and the surrounding areas which in Panel b correspond to 
the less sensitive localities. In turn, the least vulnerable and moderately vulnerable 
localities are located in the west part of the Basin.

Figure 4: Adaptive Capacity Indicator at Locality Level: (a) Adaptive Capacity

(a)
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Figure 5: Adaptive Capacity Indicator at Locality Level: (b) Sensitivity

Figure 6: Adaptive Capacity Indicator at Locality Level: (c) Exposure

(b)

(c)
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4.   Discussion

Following the vulnerability concept, our approach presents a methodology to 
quantify the level of exposure in function of the geographic location. We have chosen 
a method that considers the statement of IPCC 2001, which recommended that the 
exposure should be represented by the variability of climate conditions. The adequate 
representation of these factors is important as climate change is not only a defined 
and specific natural event. Also, climate change effects are globally different, and the 
short and long-term effects are barely understood. Thus, even though we can have 
some expectations about how climate change will affect the frequency or intensity 
of some hazards (e.g. flooding and droughts), uncertainty remains about location and 
variability. In our approach, given that small changes in variance and mean of climate 
variables produce changes in the frequency and intensity of hazards, the use of climate 
indicators allows us to incorporate the relative sources of the extreme weather events, 
(Gutowski et al. 2008; Kevin E. Trenberth 1999).

For IPCC (2001), both climate variability and climate extremes are described 
through statistical distributions of precipitation and temperature. It is remarkable that 
changes in the mean values cannot explain adequately the extreme events occurrence. 
Plus, changes in the variance alone cannot explain high values during extreme events 
either. This leads us to use a method that incorporates both the mean and the variance 
of the climate variables for adequate explanation of the level of exposure to climate 
changes effects. We disregard the use of single values of means for a particular 
locality, since we will compare multiple variables from different places. For this 
reason we include the spatial pattern, which could be interpreted as the mean value for 
all localities clustered in the same regions. We also include in our analysis the value 
of monthly and yearly variance for the different locations. This approach (mean and 
variance) lets us consider the vulnerability of communities to extreme weather events 
and their effects rather than more or less precipitation, humidity and wind intensity, or 
minimum or higher temperatures.

We have found some difficulties to apply a standard method to analyze the climate 
parameters, for instance, we used yearly averages instead of monthly average for the 
precipitation amount in the EOF computation. It was remarkable for us to find that the 
spatial and temporal pattern of climate conditions obeys to different factors that affect 
their behavior in the area of study.

We use reanalysis data, which is the outcome of numerical models and observational 
data assimilation, from which we aim to get a standard dataset for the analysis and 
comparison between different locations. This method is convenient in countries where 
it is not easy to get meteorological information, due to the lack of meteorological 
stations or the difficulty on processing this information. At the same time, reanalysis 
models can satisfactorily reproduce the natural variability (Tett, Johns, and Mitchell 
1997) and yield reliable results for inter seasonal variability.  

In this paper we have also identified that population size does not necessarily 
imply that infrastructure will accompany their development such that vulnerability 
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be reduced. A future economic or demographic impact analysis would complement 
the extent of the implications of this study. Similar to O’Brien et al. (2004) we 
present a method for mapping vulnerability to stressors at the sub-national level. 
We operationalize the IPCC definition of vulnerability in a sub-national assessment 
to show how different factors that shape vulnerability vary within one country. The 
approach places the social and economic well-being of society at the centre of the 
analysis, focusing on the socio-economic and institutional constraints that limit 
the capacity to respond. From this perspective, the vulnerability of any locality is 
determined by resource availability and by the entitlement of individuals and groups 
to call on these resources (Kelly & Adger, 2000).

The importance of social capital is difficult to capture in geo-referenced data, 
vulnerability requires integration of both physical, ecological, and social variables, 
however the challenge remains on identifying those factors that are relevant in each 
case (Moser, 2010). Plus, it is an open research endeavour to assess how different 
weighting of indicators influence interpretation and be usefully linked to planning, 
prioritization, and decision-making; as well as to determine what infrastructure is 
required to ensure monitoring over time given the dynamic nature of vulnerability. 
The latter is important specially if we know that anticipating or adapting to climate 
change impacts become vital in order to minimize their consequences on human well-
being and on the environment  (Bele, Tiani, Somorin, & Sonwa, 2013).
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