Análisis del método matemático de detección SVD en cognitive radio

  • Pablo Palacios Universidad de Chile
  • Alberto Castro Universidad de Chile
  • Cesar Azurdia Universidad de Chile

Resumen

En este trabajo, el desempeño del método de descomposición en valores singulares (SVD), aplicado a la detección de usuarios en una red móvil cognitiva es evaluado. El rendimiento del método SVD se analizó en términos de Probabilidad de detección (Pd) vs relación señal / ruido (SNR), obteniendo un modelo matemático basado en una distribución de probabilidad acumulada (CDF).
Los resultados se compararon con las CDF´s de los métodos SVD teórico y detección de energía, mediante el estimador estadístico de máxima verosimilitud (MLE), concluyendo que el método aplicado en el sistema evaluado superó a los métodos teóricos en términos de Pd.


Palabras clave: Radio Cognitiva en Redes Móviles, Descomposición en Valores Singulares (SVD), Probabilidad de detección (Pd), Estimador de Máxima Verosimilitud (MLE), Distribución de Probabilidad Acumulada (CDF)

Citas

A. Galanopoulos, F. Foukalas, and T. A. Tsiftsis, "Efficient coexistente of LTE with WiFi in the licensed and unlicensed spectrum aggregation," IEEE Transactions on Cognitive Communications and Networking, vol. 2, no. 2, pp. 129-140, Jun. 2016.

D. M. Alias and R. G. K, "Cognitive radio networks: A survey," in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Mar. 2016, pp. 1981-1986.

E. Biglieri, A. J. Goldsmith, L. J. Greenstein, H. V. Poor, and N. B. Mandayam, Principles of cognitive radio. Cambridge University Press, 2013.

L. Held and D. Sabanés Boyé, Applied statistical inference. Springer, 2014, vol. 10.

M. F. Fahim and M. S. Raeen, "Svd detection for cognitive radio network based on average of maximum-minimum of the icdf," International Journal of Advanced Computer Research, vol. 2, no. 3, Sep. 2012.

N. Muchandi and R. Khanai, "Cognitive radio spectrum sensing: A survey," in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Mar. 2016, pp. 3233-3237. 161.

Ns-3 Model Library, Release ns-3.23, Aug. 2015. [Online]. Available: https://www.nsnam.org/docs/relcase/3.23/models/n s- 3-model-librarv.pdf

R. Abdelrassoul, E. Fathy, and M. S. Zaghloul, "Comparative study of spectrum sensing for cognitive radio system using energy detection over different channels," in 2016 World Symposium on Computer Applications & Research (WSCAR), Mar. 2016, pp. 32-35.

R. C. Team, "R: A language and environment for statistical computing." Vienna: R Foundation for Statistical Computing, 2014. [Online]. Available: www. R-project,org

S. M. Jacob and N. S., "Spectrum sensing technique in cognitive radio based on sample covariance matrix," in 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Dec. 2015, pp. 139-144,

S. Xu, K. S. Kwak, and R. R. Rao, "Svd based wideband spectrum sensing and carrier aggregation for Ite-advanced networks," in 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Sep. 2014, pp. 1190-1194.

S. S. Ali, C. Liu, and M. Jin, "Minimum eigenvalue detection for spectrum sensing in cognitive radio," International Journal of Electrical and Computer Engineering, vol. 4, no. 4, pp. 623-630, Aug. 2014.

S. Bhattarai, J. M. J. Park, B. Gao, K. Bian, and W. Lehr, "An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research," IEEE Transactions on Cognitive Communications and Networking, vol. 2, no. 2, pp. 110-128, June 2016.

Y. Zeng and Y. C. Liang, "Maximum-minimum eigenvalue detection for cognitive radio," in 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2007, pp. 1-5.

Y. Ma, Y. Gao, Y. C. Liang, and S. Cui, "Reliable and efficient sub-nyquist wideband spectrum sensing in cooperative cognitive radio networks," IEEE Journal on Selected Areas in Communications, vol. 34, no. 10, pp. 2750-2762, Oct. 2016.
Publicado
2018-04-02
Sección
Articulos